

CBCS SYLLABUS

DEPARTMENT OF COMPUTER SCIENCE

Syllabus for M.Sc. in Computer Science

Duration: Two Years (Four Semesters) Total Marks: 1100 (300 + 300 + 250 +250) Total Credit Points: 88 (24 + 24 + 20 + 20)

Detailed course structure

	Course Code	Course Title	Course Credit	Full Marks	L-T-P
	MSCCS101	Advanced Computer Architecture	4	50	4-0-0
	MSCCS102	Advanced Data Structures and Algorithms	4	50	3-1-0
	MSCCS103	Computer Network & Cyber security	4	50	4-0-0
	MSCCS104	Theory of Computation	4	50	4-0-0
SEM-I	EVS-CB11	Introduction to Environmental Science	4	50	3-1-0
	MSCCS105	Data Structures & Algorithms Lab	2	25	0-0-2
	MSCCS106	Computer Network Lab	2	25	0-0-2
	Total			300	

	Course Code	Course Title	Course Credit	Full Marks	L-T-P
	MSCCS201	Soft Computing & AI	4	50	3-1-0
	MSCCS202	Advanced Database Management Systems	4	50	3-1-0
SEM-2	MSCCS203	Compiler Design	4	50	4-0-0
	MSCCS204	Data Science and Optimization Techniques	4	50	4-0-0
	EVS – CB21	Environmental Management	4	50	3-1-0
	MSCCS205	DBMS Lab	2	25	0-0-2
	MSCCS206	Data Science and AI Lab	2	25	0-0-2
Total		24	300		

	Course Code	Course Title	Course	Full Marks	L-T-P
			Credit		
	MSCCS301	Digital Image Processing	4	50	4-0-0
SEM-3	MSCCS302	Introduction to Cryptography	4	50	3-1-0
	MSCCS303	Advanced Software Engineering	4	50	4-0-0
	MSCCS304	Machine Learning	4	50	3-1-0
	MSCCS305	Machine Learning Lab	2	25	0-0-2
	MSCCS306	Minor project	2	25	0-0-2
	Total			250	

	Course Code	Course Title	Course	Full Marks	L-T-P
SEM-4			Credit		
	MSCCS401	Cloud and Green Computing	4	50	3-1-0
	MSCCS402	Elective E1	4	50	4-0-0
	MSCCS403	Grand Viva	4	50	4-0-0
	MSCCS404	Major Project	8	100	0-0-8
Total		20	250		

Elective E1: Distributed Systems/ VLSI Design/Deep Learning

Somostor	
Semester	
Course Name &	Advanced Computer Architecture (MISCCS101)
course code	
Course content	Module I: Parallel processing: Parallel computer architecture, Flynn's classification (SISD,
	SIMD, MISD, MIMD structures); Applications of parallel processing. [4 L]
	Module II: Concepts of Pipelining, pipeline scheduling, Arithmetic pipeline, Instruction set
	Pipelining, dynamic pipelining, pipelining Hazards, techniques for handling hazards. [8 L]
	Module III: Array and Vector Processor: Vector processing principles, Instruction types,
	compound vector operation, vector loops and chaining, Array Processors: Structure : Systolic
	array processor [8 L]
	Module IV: Systematic and distributed shred memory architecture, cache coherence issues,
	performance issues, synchronization issues, models of memory consistency, Interconnection
	networks, buses, crossbar and multistage switches. [10 L]
	Module V: Design issues in parallel computing: Memory hierarchy and transaction specific
	memory design: Thread organization, synchronization, scheduling, Job Allocation, Job
	partitioning, dependency analysis, Mapping parallel algorithms onto parallel architectures. [10 L]
Books and	1. Kai Hwang, Advanced Computer Architecture, Tata Mc Graw Hills.
references	2. Parallel Computer Architecture: A Hardware/Software Approach, David E. Culler,
	Jaswinder Pal Singh, Anoop Gupta, Gulf Professional Publishing.
	3. Kai Hwang and F. A. Briggs, Computer Architecture and Parallel Processing, TataMc
	Graw Hills
	4. Hennessy Patterson, Computer Architecture, A quantitative Approach, 5th ed,Elsevier.

Semester	I (ONE)
Course Name &	Advanced Data Structures and Algorithms (MSCCS102)
course code	
Course content	Module I: Analysis of algorithms: Time and space complexities, asymptotic notation (big-Oh,
	big-Theta, big-Omega, small-oh and small-omega), Recurrence relations and solutions. [8L]
	Modulo II: Sorting Algorithms: Heap sort, Radix sort, Shell sort, Count sort, Randomized quick
	sort.
	Module III: Dynamic Programming: Longest common subsequence problem, Matrix, chain
	multiplication, Optimal binary search trees. [8L]
	Module IV: Backtracking, Branch & Bound: 8 queen's problem, Travelling salesperson
	problem. [8L]
	Module V: Tree & Graph Algorithms: BFS, DFS, minimal spanning tree, Bellman-ford
	algorithm, Floyd- Warshall algorithm, Topological sort, Red-black tree : properties, insertion and
	deletion. [8L]
	Module VI: Computational complexity: P, NP and NP-completeness and reducibility, statement
	of cook's theorem, NP-complete problems: Clique, Vertex cover, Hamiltonian cycle.) [8L]
Books and	1. T. H. Cormen, C. E. Leiserson and R. L. Rivest: Introduction to Algorithms, PrenticeHall of
references	India, New Delhi, 1998.
	2. Aho, J. Hopcroft and J. Ullman: The Design and Analysis of Computer Algorithms,
	A.W. L, International Student Edition, Singapore, 1998.
	3. S. Baase: Computer Algorithms: Introduction to Design and Analysis, 2nd ed., Addison-
	Wesley, California, 1988.
	4. E. Horowitz and S. Sahni: Fundamental of Computer Algorithms, Galgotia Pub.

Semester	I (ONE)
Course Name &	Computer Network and Cyber Security(MSCCS103)
course code	
Course content	Module I: Routing algorithms: Shortest path first, Flooding, Distance vector routing, Link state
	routing, Hierarchical routing, Broadcast and Multicast routing. [6L]
	Module II: Routing protocols: ARP, RARP, ICMP, RIP, OSPF, BGP [8L]
	Module III: Congestion control techniques, congestion control in TCP, VLAN, VPN, and WLAN
	[6L].
	Module IV: Threats and its types- Internal and External, introduction to cyber-security,
	McCumber's cube, cyber-warfare [3L]
	Module V : Methods of infiltration: : Social Engineering, SEO (Search engine optimization)
	poisoning, Dos (Denial-of-serveice), DDoS, Botnet, wi-fi password cracking, password attacks,
	[7L]
	Module VI: Attack Tools: Malware, spyware, adware, backdoor, ransomeware, scareware, rootkit,
	virus, Torjan Horse and worm; type of attackers: White hat, Gray Hat and black hat attackers
	[10L].
Books &	1. Computer Networks — Andrew S Tanenbaum, 4th Edition. PearsonEducation/PHI
references	2. Data Communications and Networking – Behrouz A. Forouzan, Third EditionTMH.
	3. Cybersecurity and Cyberlaw, Abraham Wagner, Nicholas Rostow
	4. Security in Computing, Fourth Edition, by Charles P. Pfleeger, Pearson Education

Semester	I (ONE)
Course Name &	Theory of Computation (MSCCS104)
course code	
Course Content	Module I: Regular Languages Introduction: Regular Language Models: Deterministic Finite
	Automaton (DFA), Non-Deterministic Finite Automaton (NDFA), Equivalence of DFA and
	NDFA, Regular Languages, Regular Grammars, Regular Expressions, Properties of Regular
	Language, Pumping Lemma [12 L]
	Module II: Context Free Language: Pushdown Automaton (PDA), Non-Deterministic
	Pushdown Automaton (NPDA), Context Free Grammar, Chomsky Normal Form, Greibach
	Normal Form, Ambiguity, Parse Tree Representation of Derivation Trees, Equivalence of PDA's
	and Context Free Grammars; Properties of Context Free Language. [18L]
	Module III: Turing Machines (TM): Standard Turing Machine and its Variations; Universal
	Turing Machines, Models of Computation and Church-Turing Thesis; Recursive and
	Recursively Enumerable Languages; Context-Sensitive Languages, Unrestricted Grammars,
	Chomsky Hierarchy of Languages, Construction of TM for Simple Problems. [10L]
Books and	1. John E. Hopcroft, Rajeev Motwani and Jeffery D. Ullman, Automata Theory.
references	2. Languages, and Computation (3rd. Edition), Pearson Education, 2008.
	3. Michael Sipser, Introduction to the Theory of Computation, Books/Cole ThomsonLearning,
	2001.
	4. JE Hopcroft and JD Ullman, Introduction to Automata Theory, Languages, and
	Computation, Addison-Wesley, 1979.

Semester	I (ONE)
Course Name &	Introduction to Environmental Science (EVS-CB11)
course code	
Course Content	Unit-1: Basic concept of environment Basic concepts of environment and environmentalism,
	Environmental education and awareness, Environmental ethics and global imperatives, Basic
	concept of sustainable development.
	Unit -2: Ecosystems and Ecology Ecosystems: types, structures and function. Energy f low in
	ecosystem, Biogeochemical cycle, Population and Community ecology, Niche and Habitat
	concept, Succession, Biodiversity and Conservation Biology.
	Unit-3: Energy and Environment Energy Environment and Society, Renewable and Non-
	renewable energy resources, Types of Alternative energy, Energy security and EnergyAudit.
	Unit -4: Green Technology, Applications of Green Technology, Green infrastructure, Green
	Chemistry, Green planning and economy.
	Unit -5: Current Environmental Issues in India. Environmental movements and related issues,
	Water, Energy and Waste management issues, Joint Forest Management, Man-animal conflict,
	Ecological restorations, Environmental pollution, Extreme weather events, Land use related
	issues

Semester	I (ONE)
Course Name &	Data Structures and Algorithms Lab (MSCCS105)
course code	
Course content	Sample programs :
	1. Implement Heap sort, Radix sort, Shell sort, Count sort, Randomized quick sort.
	2. Implement matrix-chain multiplication
	3. Implement graph based algorithms: Bellman-Ford, Floyd-Warshall all pair shortest path
	algorithm.
	4. Write a program to determine the LCS of two given sequences.
	5. Implement graph traversal algorithms (BFS,DFS).
	6. Implement minimum spanning tree of a graph using Prim's and Kruskal's algorithm.

Semester	I (ONE)
Course Name &	Computer Network Lab (MSCCS106)
course code	
Course content	Sample programs :
	1. Implement the different routing algorithms: Shortest path first, Flooding, Distance vector
	routing, Link state routing etc.
	2. Simulate Cyclic Redundancy Check (CRC) error detection algorithm for noisy channel.
	3. Simulate parity check method for odd no. of error detection.
	4. Simulate Hamming-code based error detection & correction algorithm for noisy channel.
	5. Simulate and implement stop and wait protocol for noisy channel.
	6. Simulate and implement go-back-N sliding window protocol.
	7. Implement the following functions: socket, connect, bind, listen and accept.

Semester	II (TWO)
Course Name &	Artificial Intelligence and Soft computing (MCSCS201)
course code	
Course Content	Module I: Introduction: Definition, Goal, Importance, History, Applications, Components and
	Branches of Artificial Intelligence (AI) Turing Test. [3L]
	Module II: Agents and Environments: Introduction, Concept of Rationality, Typesof
	Agents, Types and Properties of Environments. [2L]
	Module III: Search Strategies: Search Methods, Uninformed Search (BFS, DFS, Uniform
	Cost, Depth limited, Iterative Deepening, Bidirectional), Informed Search Methods (Hill
	climbing, Best First, A*, and AO*, Simulated Annealing, Branch and Bound), Adversarial
	Search, Game Playing, Min-Max Search, Alpha Beta Cutoff Procedures. [8L]
	Module IV: Predicate Logic in AI: First Order Predicate Logic and its use in knowledge
	representation, Resolution Principle. Use of Resolution in reasoning and question answering,
	Knowledge Representation: Logic, Semantic Networks, Frames, Rules, Scripts, Conceptual
	Dependency and Ontologies; Expert Systems, Handling Uncertainty in Knowledge. [12L]
	Module V: Sets: Notion of Fuzziness, Membership Functions, Fuzzification and
	Defuzzification; Operations on Fuzzy Sets, Fuzzy Functions and Linguistic Variables; Fuzzy
	Relations, Fuzzy Rules and Fuzzy Inference; Fuzzy Control System and Fuzzy Rule Based
	Systems. [8L]
	Module VI: Genetic Algorithms (GA): Encoding Strategies, Genetic Operators, Fitness
	Functions and GA Cycle; Problem Solving using GA. [7L]
Books and	1. Artificial Intelligence – Making a System Intelligent by Dr. Nilakshi Jain, Wiley
References	2. Introduction to Artificial Intelligence & Expert System by D.W. Patterson, PHI
	3. Introduction to Artificial Intelligence by Rich & Knight.
	4. Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & Applications,
	S.Rajasekaran, G. A. Vijayalakshami, PHI

Semester	II (TWO)						
Course Name &	Advanced Database Management System (MCSCS202)						
course code							
Course Content	Module I: Functional Dependencies and Normalization (3NF, 4NF, 5NF). [8L]						
	Module II: Query processing and optimizations: Steps of query processing, query interpretation,						
	equivalence of expression, estimation of cost, join strategies. [8L]						
	Module III: Transaction processing and concurrency control: Transaction and schedule; ACID						
	property, Serializability, Anomalies with interleaved execution, Conflict and View						
	serializability; Concurrency control techniques: Locking and Timestamp based protocols, Multi-						
	version and validation based schemes, multiple granularity locking, deadlock handling, Crash						
	recovery: ARIES, Recovery data structure Log, Write ahead logging, Check-pointing, Recovery						
	from a system crash. [8L]						
	Module IV: Distributed Database: Distributed database system, Distributed database design,						
	Data fragmentation, Data replication, Data allocation, Query processing in distributed databases.						
	[8L]						
	Module V: NoSQL: Different NoSQL Products, Querying and managing NoSQL, Indexing and						
	Ordering Data sets. [8L]						
Books and	1. Elmasri, Navathe, Fundamentals of Database System, 3/e, Pearson Education.						
References	2. Korth, Silberschatz : Database System Concepts, McGrawHill .						
	3. Ozsu, Principals of Distributed Database System, Pearson Education.						
	4. Ceri and Pelagatti, Distributed Databases: Principles and System: McGrawHill						
	5. T.J.Teorey - Database Modeling & Design, 3rd edition, Harcourt Asia Pte. Ltd., New Delhi,						
	2002.						

Semester	II (TWO)
Course Name &	Compiler Design (MCSCS203)
course code	
Course Content	Module I: Introduction to compiler, types of compiler, difference between compiler and
	interpreter, introduction to loader, linker, assembler and cross assembler. [3L]
	Module II: Syntax Analysis: Associativity, Precedence, Grammar Transformations, Top Down
	Parsing, Recursive Descent Predictive Parsing, LL(1) Parsing, Bottom up Parsing, LR Parser,
	LALR(1) Parser. [8L]
	Module V: Semantic Analysis: Attribute Grammar, Syntax Directed Definitions, In herited and
	Synthesized Attributes; Dependency Graph, Evaluation Order, S-attributed and L- attributed
	Definitions; Type-Checking. [8L]
	Module VI: Run Time System: Storage Organization, Activation Tree, Activation Record,
	Stack Allocation of Activation Records, Parameter Passing Mechanisms, Symbol Table. [8L]
	Module VII: Intermediate Code Generation: Intermediate Representations, Translation of
	Declarations, Assignments, Control Flow, Boolean Expressions and Procedure Calls. [8L]
	Module VIII: Code Generation and Code Optimization: Control-flow, Data-flowAnalysis,
	Local Optimization, Global Optimization, Loop Optimization, Peep-Hole Optimization,
	Instruction Scheduling. [5L]
Books and	1. JE Hopcroft and JD Ullman, Introduction to Automata Theory, Languages, and
References	Computation, Addison-Wesley, 1979.
	2. Aho, Sethi, Ullman – "Compiler Principles, Techniques and Tools" - PearsonPublication.
	3. Compiler Design in C: Holub, PHI.

Semester	II (TWO)						
Course Name &	Data Science and Optimization techniques (MCSCS204)						
course code							
Course Content	Module I : Introduction to Statistics; Measures of Central Tendency: Mean, Median, Mode and other measures; Measures of Dispersion: Range, standard deviation, variance and other measures. [8L].						
	Module II: Introduction to probability: sample space, events, conditional probability. [2L]						
	Module III: Introduction to Data Science and its applications; Importance of Data Visualization						
	and its types: Charts, Graphs, Tables, Maps and Histogram; Exploratory Data Analysis:						
	Univariate Analysis, Multivariate Analysis [13L].						
	Module IV: Ethics in Data Science; Data Governance; Data Privacy; Introduction to Big Data						
	[3L].						
	Module V: Optimization: Linear Programming - Mathematical Model, Graphical Solution,						
	Simplex and Dual Simplex Method, Sensitive Analysis; Integer Programming, Transportation						
	and Assignment Models, PERT-CPM: Diagram Representation, Critical Path Calculations and						
	Resource Levelling, Cost Consideration in Project Scheduling [14L].						
Books and	1. N.G.Das, Statistical Methods, McGraw Hill Education, 1 st edition.						
References	2. D. Cielen, A.D.B. Meysman and Mohamed Ali, Introduction to Data Science.						
	3. N.C.Das, Data Science for Profesionals, SPD.						
	4. GS Sandhu, Linear Programming, First world publications.						

Semester	II (TWO)
Course Name &	Environmental Management(EVS – CB21)
course code	
Course Content	Unit 1: Natural Resource Management and Sustainability
	Concept of natural resources; Water resources; Mineral resources; Energy resources; Land
	resources; Forest resources; Bio-resources and management; Sustainable use of resources.
	Unit 2: Waste Management, Solid, liquid and gaseous waste; Pollution from untreated waste
	disposal/discharge, Toxic effects of waste; Waste segregation, handling and management,
	Analysis and treatment of wastes, Domestic and industrial waste management, Resource
	recovery and reuse, Waste to energy; Zero liquid discharge concept, Laws and policies for
	pollution prevention and waste management.
	Unit 3: Urban Ecosystem and Management, Urbanization; Development induced population
	displacement, Environment in an urban setting, Urban dwelling, Heat islands, Urban interface
	with the environment, Natural spaces in a city; Pollution due to population explosion and habitat
	degradation; Planning and environmental management.
	Unit 4: Hazards and Disaster Management ,Hazards, disasters, risks and vulnerability;
	Earthquake, flood, cyclone and tsunami; Mitigation and preparedness; Disaster management;
	National policies and programs; Role of local bodies; Case studies on major natural disasters.
	Unit 5: Regulations for Environmental, Management Environmental Impact Assessment-
	regulations, notifications and amendments, Environmental monitoring and role of regulatory
	agencies, Coastal regulatory zones, Special economic zones, Environmental audit, Corporate
	Environment al responsibility.

Semester	II (TWO)				
Course Name &	Advanced Database Management Systems Lab (MSCCS205)				
course code					
Course Content	Module I: Introduction to SQL constructs. Review of Basic SQL statements Select, Project,				
	Join, Describing Oracle tables, restricting row returns Creating basic reports, Using the set				
	commands, Adding prompts to queries.				
	Module II: Joining Oracle tables -Equi-join, Outer join Hiding joins by creating views, Using				
	IN, NOT IN, EXISTS and NOTEXISTS, Subqueries, Exercise – write a subquery, Correlated				
	subquery, Noncorrelated subqueries .				
	Module III: Advanced SQL operators -Between operator, IN and NOT IN operators, Sub-				
	queries-EXISTS clause, Using wildcards in queries (LIKE operator), Aggregation in SQL -				
	Count(*),Sum, Avg, Min and max. Using the group by clause, SQL access methods, Review of				
	Basic joining methods-Merge join, Hash Join, Nested Loop join.				
	Module IV: Introduction to PL/SQL.				

Semester	II (TWO)									
Course Name &	Data Science	& AI L	ab (MSC	CS206)						
course code										
Course Content	Sample Prog	grams:								
	1. Fifteen stuc	lents we	ere enroll	ed in a c	ourse. Th	nere ages	were: 20	20 20 20	0 20 21 2	1 21 22
	22 22 22 23 2	3 23.				-				
	i. Find the me	dian ag	e of all st	udents u	nder 22 y	ears, ii.	Find the	median a	age of all	students.
	iii. Find the m	ean age	e of all st	udents , i	v. Find th	he modal	age for a	all studer	nts	
	v. Two more students enter the class. The age of both students is 23. What is now mean,									
	mode and median?									
	2. Following table gives a frequency distribution of systolic blood pressure. Compute all									
	the measure	es of dis	persions			-		_		_
	Midpoint	95.5	105.5	115.5	125.5	135.5	145.5	155.5	165.5	175.5
	Number	5	8	22	27	17	9	5	5	2

Semester	III (THREE)				
Course Name &	Digital Image Processing (MSCCS301)				
course code					
Course Content	Module I: Introduction: Background, Digital Image Representation, Fundamental step				
	Image Processing, Elements of Digital Image Processing - Image Acquisition, Storage,				
	Processing, Communication, Display. [4L]				
	Module II: Digital Image Formation: A Simple Image Model, Geometric Model- Basic				
	Transformation (Translation, Scaling, Rotation), Perspective Projection, Sampling &				
	Quantization - Uniform & Non uniform. [4L]				
	Module III: Image Enhancement: Mathematical Preliminaries: Neighbour of pixels,				
	Connectivity, Relations, Equivalence & Transitive Closure; Distance Measures,				
	Arithmetic/Logic Operations, Fourier Transformation, Properties of The Two-Dimensional				
	Fourier Transform, Discrete Fourier Transform, Discrete Cosine & Sine Transform [8L]				
	Module IV: Image Enhancement: Spatial Domain Method, Frequency Domain Method,				
	Contrast Enhancement -Linear & Nonlinear Stretching, Histogram Processing; Smoothing -				
	Image Averaging, Mean Filter, Low-pass Filtering; Image Sharpening. High-pass Filtering,				
	High-boost Filtering, Derivative Filtering, Homomorphic Filtering; Enhancement in the				
	frequency domain - Low pass filtering, High pass filtering. [8L]				
	Module V: Image Restoration: Degradation Model, Discrete Formulation, Algebraic				
	Approach to Restoration - Unconstrained & Constrained; Constrained Least Square				
	Restoration, Geometric Transformation - Spatial Transformation, Gray Level Interpolation.				
	[8L]				
	Module VI: Image Segmentation: Point Detection, Line Detection, Edge detection,				
	Combined detection, Edge Linking & Boundary Detection - Local Processing, Global				
	Processing via The Hough Transform; Thresholding - Foundation, Simple Global				
	Thresholding, Optimal Thresholding; Region Oriented Segmentation - Basic Formulation,				
	Region Growing by Pixel Aggregation, Region Splitting & Merging. [8L]				
Books and references	1. Digital Image Processing; by Gonzalez, Woods, Eddins; Pearson Publication				
	2. Fundamentals of Digital Image Processing; by Anil K Jain; PHI Publication				
	3. Arthur Weeks, Fundamentals of Electronic Image Processing, PHI				

Semester	III (THREE)						
Course Name &	Introduction to Cryptography (MSCCS302)						
course code							
Course Content	Module I: Introduction to security, brief history of cryptography, understanding attacks,						
	services, mechanisms, security attacks, security services, model for network security,						
	internet standards, Basic principles of good cryptosystems, Modular arithmetic and GF(2),						
	substitution and transposition ciphers, Stream ciphers, Pseudo Random Number generators.						
	[6L]						
	Module II: Symmetric block ciphers, DES, Gallois field, polynomial arithmetic, AES,						
	Principles of S Box design, Block cipher design principles, Other Block ciphers.[4L]						
	Module III: Introduction to public key cryptography, Number theoretic foundations, public						
	key cryptography principles, RSA encryption system, primality testing, Number theoretic						
	algorithms, Attacks on RSA. Discrete Logarithm and Diffie- Hellman Key exchange,						
	ElGamal system, Digital Signature, RSA and ElGamal based Digital signature, DSA,						
	different attacks on digital signatures. [10L]						
	Module IV: Secure hash functions, Understanding Collisions, Secure Hash Algorithms-SHA,						
	HMAC, key management, Digital Certificates. [8L]						
	Module V: Network Security: Security layers in Network Protocol Stack, IP Sec, Secure						
	Socket Layer, Security protocols used in Application layer like PGP, SHTTP etc., Network						
	Defence tools – Firewalls, Intrusion Detection. [12L]						
Books and references	1. Digital Image Processing; by Gonzalez, Woods, Eddins; Pearson Publication.						
	2. Fundamentals of Digital Image Processing; by Anil K Jain; PHI Publication.						
	3. Arthur Weeks, Fundamentals of Electronic Image Processing, PHI.						

Semester	III (THREE)						
Course Name &	Advanced Software Engineering (MSCCS303)						
course code							
Course Content	Module I: Software Design: Abstraction, Architecture, Patterns, Separation of Concerns,						
	Modularity, Information Hiding, Functional Independence, Cohesion and Coupling; Object-						
	Oriented Design, Data Design, Architectural Design, User Interface Design, Component						
	Level Design. [4L]						
	Module II: Estimation and Scheduling of Software Projects: Software Sizing, LOC and						
	FP based Estimations; Estimating Cost and Effort; Estimation Models, Constructive Cost						
	Model (COCOMO), Project Scheduling and Staffing; Time-line Charts. [4L]						
	Module III: Software Testing: Verification and Validation; Error, Fault, Bug and Failure;						
	Unit and Integration Testing; White-box and Black-box Testing; Basis Path Testing, Control						
	Structure Testing, Deriving Test Cases, Alpha and Beta Testing; Regression Testing,						
	Performance Testing, Stress Testing. [8L]						
	Module IV: Software Quality: McCall's Quality Factors, ISO 9126 Quality Factors, Quality						
	Control, Quality Assurance, Risk Management, Risk Mitigation, Monitoring and						
	Management (RMMM); Software Reliability. [4L]						
	Module V: Software Configuration Management: Change Control and Version Control;						
	Software Reuse, Software Re-engineering, Reverse Engineering. [4L]						
	Module VI: Agile: Basics and Fundamentals of Agile Process Methods, Values of Agile,						
	Principles of Agile, stakeholders, Challenges, Twelve Practices of XP, Scrum Practices,						
	Applying Scrum. Need of scrum, working of scrum, Agile Testing Techniques, Test -Driven						
	Development, User Acceptance Test. [8L]						
	Module VII: Web Engineering: Attributes of web-based applications, the WebE process, a						
	framework for WebE, formulating, analyzing web-based systems, design and testing for web-						
	based applications, Management issues. [4L]						
	Module VII: Reengineering: Business process reengineering, software reengineering,						
	reverse reengineering, restructuring, forward reengineering, Economics of reengineering[5L].						
Books and references	1. Roger S. Pressman, Software Engineering - A Practitioner's Approach, McGraw-Hill						
	2. Somerville, Software Engineering, Pearson Education						
	3. Jalote, Software Engineering, Narossa Publication						
	4. Robert C. Martin ,Agile Software Development, Principles, Patterns, and Practices						
	5. Succeeding with Agile : Software Development Using Scrum, Pearson (2010)						
1							

Semester	III (THREE)					
Course Name &	Machine Learning (MSCCS304)					
course code						
Course Content	Module I: Introduction: Basic definitions, types of learning, hypothesis space and inductive					
	bias, evaluation, cross-validation. [4L]					
	Module II: Supervised learning (Classification): Concept of supervised learning, Logistic					
	Regression, Multivariate Regression Analysis, Support Vector Machine, Kernel function and					
	Kernel SVM. [10L]					
	Module III: Instance based learning, Feature reduction, Collaborative filtering-based					
	recommendation Probability and Bayes learning. [6L]					
	Module IV: Unsupervised learning (Clustering): Concept of unsupervised learning, k-					
	means, adaptive hierarchical clustering. [6L]					
	Module V: Neural network: Perceptron, multilayer network, backpropagation. [8L]					
	Module VI: Deep Learning: introduction to deep neural network, convolutional neural					
	network (CNN) [6L]					
Books and references	1. Machine Learning. Tom Mitchell. First Edition, McGraw-Hill, 1997.					
	2. Introduction to Machine Learning Edition 2, by Ethem Alpaydin					
	3. Machine Learning, Saikat Dutt, Subramanian Chandramouli, Amit Kumar Das, Pearson.					
	4. Deep Learning, Amlan Chakrabarti Amit Kumar Das, Saptarsi Goswami, Pabitra					
	Mitra, Pearson.					

Semester	III (THREE)
Course Name &	Machine Learning Lab(MSCCS305)
course code	
Course Content	Exercises to solve the real-world problems using the following machine learning methods:
	Linear Regression ,Logistic Regression, Multi-Class Classification , Support Vector
	Machines 🗆 K-Means Clustering & PCA ,Develop programs to implement Anomaly
	Detection & Recommendation Systems.

MSCCS306: Minor Project

Semester	IV (FOUR)					
Course Name &	Cloud and Green Computing (MSCCS401)					
course code						
Course Content	Module-I: Cloud Computing Overview: Origins of Cloud computing – Cloud components					
	- Essential characteristics - On-demand self-service, Broad network access, Location					
	independent resource pooling, Rapid elasticity, Measured service, Comparing cloud providers					
	with traditional IT service providers, Roots of cloud computing. [8L]					
	Module-II: Cloud Architecture: Layers and Models Layers in cloud architecture, Software					
	as a Service (SaaS), features of SaaS and benefits, Platform as a Service (PaaS), features of					
	PaaS and benefits, Infrastructure as a Service (IaaS), features of IaaS and benefits, Service					
	providers, challenges and risks in cloud adoption. Cloud deployment model: Public clouds -					
	Private clouds – Community clouds - Hybrid clouds - Advantages of Cloud computing. [12L]					
	Module-III: Virtualization and Abstraction: What is Virtualization and how abstraction is					
	provided in cloud? Advantages and Disadvantages, Types of Hypervisor, and Load					
	balancing. [4L]					
	Module-IV: Cloud Platforms and Applications: Overview on Amazon Web Services,					
	Google App Engine and Microsoft Azure [4L]					
	Module-V: Green Computing: Introduction to Green Computing & Background,					
	Logistics,, Greening Data Centers and Servers, Green cloud architecture, Energy					
	Management in Mobile Systems and Smartphones, Efficient Networking and					
	Communication, Energy Management in Smart Homes, Security and Privacy [12L]					
Books and references	1. The Green Computing Book: Tackling Energy Efficiency at Large Scale by Wu Chun					
	Feng.					
	2. Green Computing: Tools and Techniques for Saving Energy, Money, and Resourcesby					
	Bud E. Smith					
	3. Judith Hurwitz, R Bloor, M.Kanfman, F.Halper "Cloud Computing for Dummies",					
	Wiley India Edition, First Edition					
	4. Kajkumar Buyya, James Broberg, Andrzej M. Goscinski, "Cloud Computing:Principles					
	and Paradigms ⁻ , Wiley Publication, 2011.					

Semester	IV (FOUR)
Course Name &	Elective E1 (MSCCS402) : Distributed Systems
course code	
Course Content	Module I: Introduction, definition, goals, advantages-disadvantages, Hardware and software
	concepts, design issues.[3L]
	Module II: Synchronization: clock synchronization, and related algorithms, mutual
	exclusion, deadlock in distributed systems. [7L]
	Module III: Shared memory: introduction, general architecture of DSM, design and
	implementation issues of DSM, different protocols in DSM. Naming overview. [10L]
	Module IV: Processes: Threads, system model, processor allocation, scheduling, load
	balancing and load sharing; Fault tolerance system [10L].
	Module V: Communication: Computer network and layered protocols, message passing,
	synchronization, Client-server model, remote procedure call (RPC) [10L].
Books and references	1. Tanenbum, A.S., Distributed Operating Systems, Pearson Education.
	2. Singhal, Shivaratri, Advanced Concepts in Operating Systems, TMH.
	3. P.K.Sinha, Distributed Operating Systems, PHI

Semester	IV (FOUR)
Course Name &	Elective E1 (MSCCS402) : VLSI Design
course code	
Course Content	Module I: Introduction to VLSI System Design: MOS Devices, Circuits and Fabrication,
	Design Principles and Characteristics of MOS Devices in Logic Circuits, Logic
	Implementation with nMOS, pMOS, CMOS, and PLAs, Pass and Transmission Logic of
	Transistors, Size and Complexity of Integrated Circuits, Feature Size, Impact of Shrinking,
	Clocking, Scaling, PLA Minimization and Folding, Inverters and Logic Gates, Design Rules
	and Layouts, Stick Diagram, Transistor Sizing. [10L]
	Module II: Logic Design: Static nMOS and CMOS Circuits, Steering Logic, Dynamic
	CMOS Circuits, Static vs. Dynamic CMOS Designs, Domino and NORA Logic Circuits,
	Charge Sharing, Clock Generation and Distribution, Transmission Gates. [8L]
	Module III: VLSI Design Process: System Specification, Functional Design, Logic Design,
	Circuit Design, Physical Design, Verification, Fabrication and Packaging. [5L]
	Module IV: Design Styles: Custom Design, Standard-Cell Design, Gate-Array Design,
	FPGA, and MCMs. [5L]
	Module V: Physical Design Issues: Partitioning, Floor-Planning and Placement, Routing,
	Compaction, Complexity Issues, Algorithms and Data Structures for Layout Designs. [12L]
Books and references	1. Principles of CMOS VLSI Design. N. Weste and K. Eshraghian. Addison Wesley;
	2nd edition (December 20, 2000).
	2. Basic VLSI Design. D. A. Pucknell and K. Eshraghian. Pearson College Div.,
	Subsequent edition (January 1, 1995).
	3. An Introduction to VLSI Physical Design. M. Sarrafzadeh and C. K. Wong. McGraw-
	Hill College (February 21, 1996).
	4. Algorithms for VLSI Physical Design Automation. N. A. Sherwani. Springer; 3rd
	edition (November 30, 1998).
	5. Multi-Layer Channel Routing: Complexity and Algorithms. R. K. Pal. Narosa, 1st edition (September 28, 2000).

Semester	IV (FOUR)
Course Name &	Elective E1 (MSCCS402) : Deep Learning
course code	
Course Content	Module I: Introduction: Introduction: Various paradigms of earning problems, Perspectives
	and Issuesin deep learning framework, review of fundamental learning techniques. [3L]
	Activation Functions: Sigmoid, ReLU, Hyperbolic Fns, Softmax. [2L]
	Module II: Artificial Neural Networks: Introduction, Perceptron Training Rule. Gradient
	Descent, Stochastic Gradient Descent, Backpropagation, Some problems in ANN. [4L]
	Module III: Optimization and Regularization: Overfitting and Capacity, Cross Validation,
	FeatureSelection, Regularization, Hyperparameters. [4L]
	Module IV: Convolution Neural Networks: Introduction to convolution neural networks:
	stacking, striding and pooling, CNN applications. [8L]
	Module V: Introduction to Recurrent Neural Networks: Introduction to RNNs, Unfolded
	RNNs, Seq2SeqRNNs, LSTM, RNN applications. [6L]
	Module VI: Generative models: Restrictive Boltzmann Machines (RBMs), Stacking
	RBMs, Belief nets, Learning sigmoid belief nets, Deep belief nets, Autoencoders. [7L]
	Deep Learning Tools: Caffe, Theano, Torch. [6L]
Books and references	1. Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, 2016.
	2. Bishop, C., M., Pattern Recognition and Machine Learning, Springer, 2006.
	3. Deep Learning, Amlan Chakrabarti Amit Kumar Das, Saptarsi Goswami, Pabitra
	Mitra, Pearson.
	4. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
	5. Golub, G.,H., and Van Loan,C.,F., Matrix Computations, JHU Press, 2013.
	6. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill
	Education, 2004.

MSCCS403: Grand Viva

MSCCS404: Major project